

# ZipPack Tote

**Publish Date: November 2019** 



## PRODUCT DESCRIPTION

This self-standing tote is an UN-rated bag that's the only solution you'll need for containment of hazardous waste up to 3000 lbs. Our ZipPack has a unique zipper top and wire insert allowing for easy set-up, also making it compact compared to other totes.

## **FEATURES**

- Glued in 6 mil liner for ultimate leak protection
- Self-Standing
- UV-coated, weather resistant
- 3x3x3 Collapsible

## **EFFECTS OF CHEMICALS ON PLASTICS**

Chemicals can affect the weight, strength, color, dimension, flexibility, and surface appearance of plastics. The basic models of interaction that cause these changes are:

- (1) Chemical attack on the polymer chain, with resultant reduction in physical properties, including oxidation; reaction of functional groups, in or on the chain; and depolymerization;
- (2) physical change, including absorption of solvents, resulting in softening and swelling of the plastic; permeation of solvent through the plastic; or dissolution in a solvent; and
- (3) stress-cracking from the interaction of a "stress-cracking agent" with molded-in or external stresses.

The reaction combination of compounds of two or more classes may cause a synergistic or undesirable chemical effect. Other factors affecting chemical resistance include temperature, pressure, internal or external stresses (such as centrifugation) and length of exposure to/concentration of the chemical. As temperature increases, resistance to attack decreases.



#### **TECHNICAL INFORMATION**

#### Woven Bag

| Product Properties               | Specifications (Metric)                        | Test Method (ASTM) |
|----------------------------------|------------------------------------------------|--------------------|
| Weight                           | 7.32 oz/yd2 (248 g/m2)                         | D5261              |
| Thickness                        | 20 mil (.5 mm)                                 |                    |
| Tensile Property -<br>Strength   | MD – 398 lbs (1800 N)<br>TD – 394 lbs (1800 N) | D5034-09           |
| Tensile Property –<br>Elongation | MD – 22%<br>TD – 25%                           | D5034-09           |
| Trap Tear                        | MD – 185 lbs (823 N)<br>TD – 167 lbs (743 N)   | D4533-04           |
| Tongue Tear                      | MD – 101 lbs (449 N)<br>TD – 143 lbs (636 N)   | D2261-07a          |
| Accelerated UV<br>Weathering     | >70% @ 1200 hrs                                | G53                |
| Working<br>Temperature<br>Range  | Maximum 275°F<br>Minimum -14°F                 |                    |

### 6 mil Inner Coating

| o min minor ocati             | _                                                      |                        |  |
|-------------------------------|--------------------------------------------------------|------------------------|--|
| Product Properties            | Specifications                                         | Test Method (ASTM)     |  |
| Thickness                     | 4.4 mil (0.1 mm) average                               | D5199                  |  |
| Tensile Property-<br>Strength | MD – 3416 psi (23600 kPa)<br>TD – 3071 psi (21200 kPa) | D882, 2ipm strain rate |  |
| Tensile Property - Elongation | MD – 669%<br>TD – 730%                                 | D882, 2ipm strain rate |  |
| Impact Resistance             | 4.2 oz (118 g)                                         | D1709, Method B        |  |
| Tear Resistance               | MD – 14.5 oz (410 g)<br>TD – 82.3 oz (2332 g)          | D1922                  |  |
| Melting Point                 | 248°F (120°C)                                          | Industry Average       |  |
| Cold Crack                    | -25.6°F (-32°C)                                        | Industry Average       |  |

#### **CHEMICAL INFORMATION**

Use this chart as a General Guide only. Test each chemical first before storing in plastic. The first letter of each pair represents the resistance rating at 20 degrees Celsius; the second at 50 degrees Celsius.

E - No damage after 30 days of constant exposure G - Little or no damage after 30 days of constant exposure F - Some effect after seven days of constant exposure.

Depending on the plastic, the effect may be cracking, crazing, and loss of strength or discoloration. Solvents may cause softening, swelling, and permeation losses with HDPE; the solvent effects on these materials are usually reversible.

N - Not recommended for continuous use. Immediate damage may occur. Depending on the plastic, the effect will be severe cracking, crazing, loss of strength, discoloration, deformation, dissolution, or permeation loss.

#### **CAPACITY INFORMATION**

| Measurement  | Capacity               |  |  |
|--------------|------------------------|--|--|
| Cubic Yards  | 1 yd <sup>3</sup>      |  |  |
| Cubic Feet   | 27 ft <sup>3</sup>     |  |  |
| Cubic Inches | 46,656 in <sup>3</sup> |  |  |
| Gallons      | 202 gal                |  |  |

## **CHEMICAL INFORMATION**

| Acetaldehyde               | GF | Cinnamon Oil FN                  |
|----------------------------|----|----------------------------------|
| Acetamide, sat.            | EE | Citric Acid 10% EE               |
| Acetic Acid 5%             | EE | Cresol                           |
| Acetic Acid 50%            | EE | Cyclohexane DN                   |
| Acetone                    | NN | DeCalin EG                       |
| Acetonitrile               | EE | o-Dichlorobenzene FF             |
| Acrylotnitrile             | EE | p-Dichlorobenzene DF             |
| Adipic Acid                | EE | Diethyl Benzene FN               |
| Alanine                    | EE | Diethyl Ether FN                 |
| Allyl Alcohol              | EE | Diethyl Ketone NN                |
| Aluminum Hydroxide         | EE | Diethyl Malonate EE              |
| Aluminum Salts             | EE | Diethylene Glycol EE             |
| Amino Acids                | EE | Diethylene Glycol Ethyl Ether EE |
| Ammonia                    | EE | Dimethyl Formamide EE            |
| Ammonium Acetate, sat      | EE | Dimethylsulfoxide EE             |
| Ammonium Glycolate         | EE | 1,4 Dioxane GG                   |
| Ammonium Hydroxide 5%      | EE | Dipropylene Glycol EE            |
| Ammonium Hydroxide 30%     | EE | Ether FN                         |
| Ammonium Oxalate           | EE | Ethyl Acetate EE                 |
| Ammonium Salts             | EE | Ethyl Alcohol (absolute) EE      |
| n-Amyl Acetate             | EG | Ethyl Alcohol 40% EE             |
| Amyl Chloride              | FN | Ehyl Benzene GF                  |
| Aniline                    | EG | Ethyl Benzoate GG                |
| Banzaldehyde               | EE | Ethyl Butyrate GF                |
| Benzene                    | NN | Ethyl Chlorode, liquid FN        |
| Benzoic Acid, sat.         | EE | Ethyl Cyanoacetate EE            |
| Benzyl Acetate             | EE | Ethyl Lactate EE                 |
| Benzyl Alcohol             | FN | Ethylene Chloride GF             |
| Bromine                    | FN | Ethylene Glycol EE               |
| Bromobenzene               | FN | Ethylene Glycol Methyl EE        |
| Bromoform                  | NN | Ether Ethylene Oxide GF          |
| Butadiene                  | FN | Fluoride                         |
| n-Butyl Acetate            | EG | Fluorine GN                      |
| n-Butyl Alcohol            | EE | Formaldehyde 10% EE              |
| sec-Butyl Alcohol          | EE | Formaldehyde 40% EE              |
| tert-Butyl Alcohol         | EE | Formic Acid 3% EE                |
| Butyric Acid               | FN | Formic Acid 50% EE               |
| Calcium Hypochlorite, Sat. | EE | Formic Acid 98-100% EE           |
| Cabazole                   | EE | Freon TF EG                      |
| Carbon Disulfide           | NN | Fuel Oil GF                      |
| Carbon Tetrachloride       | GF | Gasoline                         |
| Cedarwood Oil              | FN | Glacial Acetic Acid EE           |
| Cellosolve Acetate         | EE | Glycerine EE                     |
| Chlorine 10% in air        | EF | n-Heptane GF                     |
| Chlorine 10% (moist)       | GF | Hydrochloric Acid 1-5% EE        |

| Chloroacetic Acid            | EE | Hydrochloric Acid 20%         | EE |
|------------------------------|----|-------------------------------|----|
| p-Chloroacetophenone         | EE | Hydrochloric Acid 35%         | EE |
| Chloroform                   | FN | Hydrofluoric Acid 4           | EE |
| Chromic Acid 10%             | EE | Hydrofluoric Acid 48%         | EE |
| Chromic Acid 50%             | EE | Hydrogen Peroxide 3%          | EE |
| Hydrogen Peroxide 30%        | EE | Sulfuric Dioxide, wet or dry  | EE |
| Osobutyl Alcohol             | EE | Sulfur Salts                  | GF |
| Isopropyl Acetate            | EG | Tartarci Acid                 | EE |
| Isopropyl Alcohol            | EE | Tetrahydrofuran               | GF |
| Osopropyl Benzene            | GF | Thionyl Chloride              | NN |
| Kerosene                     | GG | Toluene                       | GG |
| Lactic Acid 3%               | EE | Tributyl Citrate              | EG |
| Lactic Acid 85%              | EE | Trichloroethane               | FN |
| Methoxyethyl Oleate          | EE | Trichloroethylene             | FN |
| Methyl Alcohol               | EE | Triethylene Glycol            | EE |
| Methyl Ethyl Ketone          | NN | Tripropylene Glycol           | EE |
| Methyl Isobutyl Ketone       | NN | Trupentine                    | GG |
| Methyl Propyl Ketone         | EG | Undecyl Alcohol               | EG |
| Methylene Chloride           | FN | Urea                          | EE |
| Mineral Oil                  | EE | Vinyllidene Chloride          | FN |
| Nitric Acid 1-10%            | EE | Xylene                        | GF |
| Nitric Acid 50%              | GN | Zinc Stearate                 | EE |
| Nitric Acid 70%              | GN |                               |    |
| Perchloroethylene            | NN | Sulfuric Acid 1-6%            | EE |
| Phenol, Chrystals            | GF | Sulfuric Acid 20%             | EE |
| Phosphoric Acid 1-5%         | EE | Sulfuric Acid 60%             | EE |
| Phosphoric Acid 85%          | EE | Sulfuric Acid 98%             | GG |
| Pine Oil                     | EG | Sulfuric Dioxide, liq., 46psi | FN |
| Potassium Hydroxide 1%       | EE |                               |    |
| Potassium Hydroxide conc.    | EE |                               |    |
| Propane Gas                  | FN |                               |    |
| Propylene Glycol             | EE |                               |    |
| Propylene Oxide              | EE |                               |    |
| Resorcinol sat.              | EE |                               |    |
| Resorcinol 5%                | EE |                               |    |
| Salicylaldehyde              | EE |                               |    |
| Salicylic Acid, powder       | EE |                               |    |
| Salicylic Acid, sat.         | EE |                               |    |
| Salt Solutions, metallic     | EE |                               |    |
| Siver Acetate                | EE |                               |    |
| Sodium Nitrate               | EE |                               |    |
| Sodium Acetate, sat.         | EE |                               |    |
| Sodium Hydroxide 1%          | EE |                               |    |
| Sodium Hydroxide 50% to sat. | EE |                               |    |
| Sodium Hypochlorite 15%      | EE |                               |    |
| Stearic Acid, crystals       | EE |                               |    |